
Thik-restart Lanzos method for eletroni struture alulationsK. Wu A. Canning H. D. SimonNERSC, Lawrene Berkeley National Laboratory, Berkeley, California 94720L.-W. WangNational Renewable Energy Laboratory, Golden, Colorado 80401February 22, 1999AbstratThis paper desribes two reent innovations related to the lassi Lanzos method for eigen-value problems, namely the thik-restart tehnique and dynami restarting shemes. Combiningthese two new tehniques we are able to implement an eÆient eigenvalue problem solver. Thispaper will demonstrate its e�etiveness on one partiular lass of problems for whih this methodis well suited: linear eigenvalue problems generated from non-selfonsistent eletroni struturealulations.1 IntrodutionThe Lanzos method is a very simple and yet e�etive algorithm for �nding extreme eigenvaluesof large matries. Sine it only needs to aess the matrix through matrix-vetor multipliations,the user has the exibility of hoosing the most appropriate matrix-vetor multipliation shemeto redue omputer memory usage and the omputation time. There is never any need to expli-itly store the full matrix whih an be prohibitively large in many eletroni struture alulations.There are two ommon ways of implementing the Lanzos method depending on whether or not theLanzos vetors are stored. When the Lanzos vetors are not stored, they have to be reomputedwhen needed for re-orthogonalization or omputing eigenvetors. This sheme is usually used with-out re-orthogonalization and only to ompute eigenvalues. Sine there is no re-orthogonalization,the Lanzos vetors will lose orthogonality after a number of steps and the Lanzos method maygenerate spurious solutions [3, 21℄. Though spurious eigenvalues an be e�etively identi�ed, how-ever, less Lanzos steps would be needed if the orthogonality is maintained. If the eigenvetorsare also wanted, the Lanzos iterations are repeated after the eigenvalues are found. This is asigni�ant amount of additional work. For the appliations under onsideration, both eigenval-ues and eigenvetors are needed, therefore it is more appropriate to store the Lanzos vetors.When the Lanzos vetors are stored, the loss of orthogonality problem an be orreted by re-orthogonalization [11, 12, 16℄ and no spurious eigenvalues are generated. Beause eah Lanzosstep generates one vetor, a large amount of omputer memory may be required to store all theLanzos vetors. If the re-orthogonalization is neessary, the time needed to arry out a Lanzosstep inreases as more Lanzos vetors are generated. For these reasons, the Lanzos algorithmthat stores the Lanzos vetors is usually restarted after a ertain number of steps.The restarted versions often use onsiderably more matrix-vetor multipliations than the non-restarted version to ompute the same eigenvalues. In reent years, newly developed restartingstrategies have signi�antly redued the number of matrix-vetor multipliations used for other1
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restarted eigenvalue methods. The two most suessful ones are the impliitly restarted Arnoldimethod [9, 17℄ and the dynami thik-restart Davidson method [18, 27℄. Compared to the Arnoldimethod and the Davidson method, the Lanzos method uses less arithmeti operations per step.Therefore we would like to apply these restarting strategies on the Lanzos method. The impliitlyrestarted Lanzos method has been studied elsewhere [2℄ and implemented in ARPACK [9℄. Herewe desribe a thik-restart Lanzos method. Beause the thik-restart proedure is only a slightmodi�ation of the Rayleigh-Ritz proedure, it is easier to implement than the impliitly restartedLanzos method. More importantly beause we have onduted detailed analysis of exatly howmany Ritz pairs to save during restarting, our implementation of the thik-restart Lanzos methodis onsiderably more e�etive than ARPACK on most of the eigenvalue problems tested [30℄.Many eletroni struture alulations result in a non-linear eigenvalue problem where thelowest eigenvetors, orresponding to the eletroni states of the physial system, are required.This problem is normally solved by iterating a linearized form of the non-linear problem, to self-onsisteny. In these ases it is advantageous to extrapolate from previous steps to produe a goodstarting guess for the eigenvetors of the next step in the self-onsistent iteration. For this reasoniterative eigensolvers that an take advantage of a good starting guess suh as the Davidson method[4℄ and the Conjugate Gradient (CG) method [19℄, are the most ommonly used. Sine the simpleLanzos method annot take an arbitrary number of starting vetors, it is more appropriate forlinear eigenvalue problems. The test problems hosen in this paper are alulations of quantum dotstrutures with empirial pseudopotentials [22, 31℄ resulting in linear eigenvalue problems.The goal of this paper is to introdue two new innovations on the Lanzos method to the readerand show the e�etiveness of the improved method through a number of examples. We will omparethe new variations of the Lanzos method against the older variations and demonstrate that thenew methods sale well as the number of required eigenvalues inreases and as the matrix sizeinreases. We will also disuss how the Lanzos method omputes the eigenvetors assoiated witha degenerate eigenvalue and how to hoose appropriate parameters in order to ahieve the orretmultipliity.Beause the algorithm used in this paper is not yet widely known, we state the algorithm and therestarting strategy so that the reader an implement their own version of the program. The mainbody of the algorithm is desribed in Setion 2. A number of restarting strategies are disussed inSetion 3. After desribing the new algorithm, we present omparisons against other versions ofthe Lanzos method and the saling properties of the new methods in Setion 4, and disuss thequestion of omputing degenerate eigenvalues and the workspae requirement in Setion 5. Someonluding remarks are given in Setion 6.2 The thik-restart Lanzos algorithmThe thik-restart Lanzos algorithm ombines the Lanzos algorithm with the thik-restart teh-nique to form a new restarted eigenvalue method. It is designed to solve symmetri or Hermitianeigenvalue problems of the form, Ax = �x;where A is the matrix, � is an eigenvalue of A and x is the orresponding eigenvetor. The Lanzoseigenvalue method omputes approximate values of � and x whih will also be denoted by � andx. Typially as more Lanzos steps are performed, the approximate values beome loser to theexat values. The e�etiveness of the method an be measured by the time it needs to omputethe solutions to a desired level of auray. 2



The Lanzos method for eigenvalue problems has two oneptually distint parts, one to on-strut the Lanzos basis and the other to ompute the approximate solutions using a projetionmethod usually the Rayleigh-Ritz projetion [12℄. The approximate eigenvalues and eigenvetorsomputed using the Rayleigh-Ritz projetion are ommonly referred to as the Ritz values and theRitz vetors [12℄ and the vetors of the Lanzos basis are also known as the Lanzos vetors. Inthe restarted Lanzos algorithm the two basi steps of onstruting a basis and performing theprojetion are arried out as usual. However, after a spei�ed number of Lanzos vetors are built,a linear ombination of the basis vetors is seleted to start the Lanzos algorithm again by usingthe same workspae to store the new basis vetors. The thik-restart Lanzos algorithm [29℄ is apartiular version of the restarted Lanzos method. It di�ers from the simple restarted Lanzosmethod in that it an save an arbitrary portion of the urrent Lanzos basis. This exibility an bee�etively used to enhane the performane of the restarted Lanzos method as demonstrated bythe impliitly restarted Lanzos method [2℄ whih is mathematially equivalent to the thik-restartLanzos method[29℄. Compared to the impliitly restarted Lanzos method, the thik-restart Lan-zos method is simpler in two ways. The thik-restart proedure is only a slight modi�ation of theRayleigh-Ritz proedure and therefore it is simpler than the impliit restart proedure. The im-pliitly restarted Lanzos method needs a post-proessing step to ompute the eigenvetors afterthe eigenvalues are omputed. The thik-restart Lanzos method does not need this step [17, 29℄.The thik-restart Lanzos method desribed next is suitable for oating-point arithmeti im-plementation. The main di�erene between this one and the one for exat arithmeti is that thisone has a re-orthogonalization step. The re-orthogonalization sheme shown here inludes a loalre-orthogonalization and a global re-orthogonalization. It guarantees that the Lanzos vetors areorthogonal to mahine preision (�) and oeÆients �i and �i are aurate to the order of �kAk.This ensures no spurious solutions are omputed and it allows us to ompute both eigenvalues andeigenvetors simultaneously.Assuming there is enough omputer memory to store m+ 1 Lanzos vetors, the thik-restartLanzos algorithm progressively builds its basis vetors as follows.Algorithm 1 InitializationTo start solving a new eigenvalue problem, take a starting vetor, normalize it and store theresult in q1 (k = 0).When restarting, the quantities �1; : : : ; �k, �1; : : : ; �k, q1; : : : ; qk and qk+1 shall satisfyAqi = �iqi + �iqk+1; i = 1; : : : ; k: (1)IterateFor i = k + 1; : : : ;m,1. qi+1 = Aqi,2. �i = qTi qi+1,3. orthogonalization:If i > k + 1, qi+1  qi+1 � �iqi � �i�1qi�1; (2)else qi+1  qi+1 � �iqi � kXj=1�jqj: (3)3



4. re-orthogonalization:� If i > k + 1, � = �2i + �2i�1, else � = �2i +Pkj=1 �2j .� If qTi+1qi+1 � �, perform the loal re-orthogonalizationqi+1  qi+1 � qiqTi qi+1 � qi�1qTi�1qi+1; (4)else if qTi+1qi+1 � �2�, perform the global re-orthogonalizationqi+1  qi+1 � iXj=1 qjqTj qi+1; (5)else, replae qi+1 with a random vetor that is orthogonal to [q1; : : : ; qi℄.� Before updating qi+1 using Equation 4 or 5, replae �i by �i+ qTi qi+1. However, donot modify �i if qi+1 is replaed by a random vetor.5. normalization: �i = kqi+1k, qi+1  qi+1=�i.If qi+1 is a random vetor, set �i to zero after qi+1 is normalized.The seond part of the algorithm performs the Rayleigh-Ritz projetion. As in the usualprojetion step of any eigenvalue method, it omputes the Ritz values and the Ritz vetors. Themain di�erene is that it also prepares the quantities involved in Equation 1 to allow the thik-restart Lanzos algorithm to restart with an arbitrary number of vetors. We will only give thebasi proedure in this setion and leave the disussion on exatly how may vetors to save, i.e., therestarting strategies, to the next setion. For onveniene of desribing the restarting proedure,we de�ne Qm � [q1; : : : ; qm℄ and Tm � QTmAQm. No omputation is required to generate Tmbeause it an be assembled from �1; : : : ; �m and �1; : : : ; �m�1. Beause the Lanzos vetors Qmare orthogonal to mahine preision in the proeeding algorithm, the matrix Tm is aurate as well.This in turn ensures the Ritz values and the Ritz vetors are aurate and Equation 1 is satis�edto mahine preision.
Tm = 0BBBBBBBBBBBB�

�1 �1. . . ...�k �k�1 � � � �k �k+1 �k+1�k+1 �k+2 . . .. . . . . . �m�1�m�1 �m
1CCCCCCCCCCCCA : (6)

Algorithm 2 Restarting sheme1. Find all eigenvalues and eigenvetors of Tm, TmY = Y D, where the olumns of Y are eigenve-tors and the diagonal elements of D are the eigenvalues. The Ritz values are di;i; i = 1; : : : m.2. Choose k Ritz values to be saved, denote the Ritz values as �1; : : : ; �k and renumber theorresponding eigenvetors of Tm as y1; : : : ; yk.3. Let Yk � [y1; : : : ; yk℄, q̂k+1 = qm+1 and replae the �rst k olumns of Qm with QmYk, i.e.,Q̂k = QmYk. The orresponding �̂i and �̂i are de�ned as:�̂i = �i; �̂i = �mym;i; i = 1; : : : ; k: (7)4



In the atual implementation, the quantities Q̂k+1, �̂i and �̂i, oupy the same storage as theorresponding quantities Qk+1, �i and �i. We distinguish them here only to make lear what arenew quantities to be used in the next Lanzos iteration and what are old quantities to be disarded.It is easy to verify that Q̂k+1, �̂i and �̂i satisfy Equation 1 [29℄, whih means that they an beused to restart Algorithm 1. When entering Algorithm 1 for the �rst time, it is hard to satisfyEquation 1 with k > 0. Thus the thik-restart Lanzos method is usually started initially with onlyone vetor. It is easy to implement a blok version of the above algorithm, in whih ase, a blokof starting vetors an be used.What makes the above algorithm di�erent from the naive expliit restarted Lanzos methodis that k is signi�antly larger than one. When k is set to one during the restarting phase, thethik-restart Lanzos algorithm redues to a simple expliitly restarted Lanzos algorithm. Theexpliitly restarted Lanzos algorithm is usually e�etive in �nding one extreme eigenvalue. Onthe other hand, saving a large number of vetors when restarting as in the thik-restart Davidsonmethod and the impliitly restarted Arnoldi method have been shown to be e�etive in �nding afew eigenvalues [2, 18, 27℄. Methods that save a large portion of the existing basis also work wellwhen the maximum basis size m is lose to the number of eigenvalues omputed. For this reason,the ability to restart with an arbitrary number of Ritz vetors is an important property of the newmethod.So far we have desribed all implementation details of the new algorithm exept step 2 ofthe restarting proedure and how to perform onvergene tests. Typial onvergene tests forsymmetri eigenvalue problems use either residual norms or estimated errors in the eigenvalues. Inthe experiment reported later, we delare a Ritz pair onverged if its residual norm is less than10�6, krik = j�̂ij < 10�6. The restarting strategies will be disussed in the next setion.3 Restarting strategiesTwo of the ruial deisions to be made during the thik-restart Lanzos algorithm are whih Ritzpairs to save and exatly how many. Based on the analyses of Morgan [10℄, saving the Ritz valuesnear the wanted eigenvalues ould enhane the onvergene rate of the restarted methods. Thesaved Ritz vetors may not be aurate approximations to their orresponding eigenvetors, butthey approximately deate the spetrum, inrease the separation between the wanted eigenvalueand the rest of the spetrum and inrease the onvergene rate of the restarted Lanzos method.Sine we only use the Lanzos method to ompute extreme eigenvalues, the Ritz pairs saved arethose with the largest Ritz values and the smallest Ritz values. The remainder of this setiondesribes our attempt to identify exatly how many Ritz pairs should be saved. There are otherarguments that an be used to guide the design of restarting shemes. A omprehensive reviewan be found elsewhere [30℄, in this setion we will only desribe two restarting strategies based onapproximate deation.The researh work that is more losely related to this one is the dynami thik-restart shemeused in the dynami thik-restart Davidson method [18℄. In this paper the deision of how manyvetors to save is based on maximizing the e�etive gap ratio. Assuming the m Ritz pairs are inasending order of the Ritz values, if we are to save Ritz pairs 1; : : : ; kl and kr + 1; : : : ;m, thee�etive gap ratio for omputing the smallest eigenvalue is de�ned to be = �kl � �1�kr+1 � �1 :When omputing more than one eigenvalue, the gap ratio is initially omputed with the outermost5



Ritz value as the referene. After the outermost eigenvalue has reahed onvergene, the e�etivegap ratio  is omputed with the next eigenvalue as the referene. For example, if the smallestRitz value has onverged, the e�etive gap ratio is omputed as  = (�kl � �2)=(�kr � �2). Thereferene Ritz value serves a similar role as the target in the Davidson method [5℄ and we shall alsoall it the target in this paper.Typially, the omputed Ritz values are never exatly idential even if the orresponding eigen-values are idential. In these ases,  is a monotoni funtion if either kl or kr is �xed. The e�etivegap ratio inreases as the di�erene between kl and kr dereases. For this reason, the maximum  isalways ahieved when kr = kl+1. This is usually not a good hoie sine it requires one to performRayleigh-Ritz projetion and ompute m�1 Ritz pairs after every matrix-vetor multipliation. Inpratie, saving m� 1 Ritz vetors often yields smaller residual norm redution per matrix-vetormultipliation than saving m=2 Ritz pairs. To understand this, we notie that the de�nition ofthe e�etive gap ratio  is only aurate if the Ritz values �1; : : : ; �kl are lose to the kl smallesteigenvalues and �kr+1; : : : ; �m are lose to the m� kr largest eigenvalues. Sine m is muh smallerthan the size of matrix A as kl beomes lose kr, the above onditions are not satis�ed and  issigni�antly larger than the atual e�etive gap ratio.To prevent an over-aggressive hoie of kl or kr, researhers have previously hosen to enforethe ondition of kr � kl+3 [18℄. After extensive testing, we found that the following restrition givesmuh better timing results for the restarted Lanzos method, kr � kl+min(m�neig; 2(m�n)=5),where m is the maximum basis size, neig is the number of eigenvalues to be omputed, n is thenumber of desired eigenvalues that have onverged already. In atual implementation, we only needto onsider kr = kl +min(m� neig; 2(m� n)=5) when performing the searh for the best . Thisleads to a simpler searhing algorithm than in the previous implementation.If the e�etive gap ratio  is aurate, after eah Lanzos step, the residual norm of the targeteigenvalue should derease by a fator that is proportion to e� [10℄. Based on this, the abovedynami restarting sheme maximizes the expeted residual norm redution during eah Lanzosstep. An alternative approah is to onsider maximizing the residual norm redution for the entirerestarted loop. If k Ritz pairs are saved, the Lanzos algorithm an proeed m � k step beforerestarting. The residual norm is expeted to derease by a fator proportional to e�(m�k) . Tomaximize the residual norm redution of the next restarted loop, we need to maximize �,� � (m� k):Sine � is not a monotoni funtion like , to �nd its maximum value, we need to ompare allpossible hoies of kl and kr. Our tests show that kr � kl +min(m � neig; 2(m � n)=5) is also areasonable restrition on the searh range for this sheme.It is possible to onstrut more dynami restarting shemes based on either empirial observationor other heuristis. However, through our tests, we have found that the above two shemes workwell for the eigenvalue problems from eletroni struture alulations studied in this paper. Moredetailed studies of various dynami restarting heuristis an be found elsewhere [30℄.4 Timing resultsIn this setion, we will use eletroni struture alulations of semiondutor nanosystems to demon-strate the e�etiveness of our new method. The systems ontain 512 to 250,000 atoms, thus farbeyond the range of ab initio alulations. To desribe the eletroni strutures of suh large sys-tems, the empirial pseudopotential has been used. In this sheme [24℄, the total potential of the6



Table 1: Test problems.# of # ofname atoms plane-waves desriptionInGaP512 512 6603 512-atom InGaP semiondutor alloyInGaAs9k 9000 137919 9000-atom InAs quantum dot systemInGaAs93k 93000 1342479 93000-atom InAs quantum dot systemInGaAs250k 250000 3683087 250000-atom InAs quantum dot systemsystem is onstruted from the superposition of atomi sreened pseudopotentials v�(r) of atomtype �. As a result, the Hamiltonian of the system an be written as:Ĥ = �12r2 +XR� v�(r�R�) (8)where fR�g are the atomi positions of atom type �, whih are obtained via a valene fore �eldalulation [14℄. The empirial pseudopotential v�(r) is �tted to bulk band strutures and defor-mation potentials. The eletroni struture of the system is obtained by solving the Shrodinger'sequation Ĥ (r) = � (r); (9)where the wavefuntion  (r) is expanded using a plane wave basis.This non-selfonsistent empirial pseudopotential sheme has been used to study quantum wells,superlatties, disordered superlatties, quantum wires, olloidal quantum dots, embedded quantumdots and omposition modulations in alloys. Exellent agreements with the experiment have beenobtained for single partile levels [25℄, exhange splitting [7℄, optial absorption spetra [23℄ andthe magnitudes of �-X oupling [20℄.As in most eletroni struture alulations of semiondutor materials, the eigenvalues of thematries fall into two distint groups, the smaller ones form a group known as the valene bandand the larger ones the ondution band. Typially, the eigenvalues of interests are those nearthe band gap beause they are diretly related to observable eletroni properties [8℄. Using theempirial pseudopotential shemes, it is possible to diretly ompute these eigenvalues and theirorresponding eigenvetors without omputing all the valene band states. Sine the goal of thispaper is demonstrate the apability of the eigenvalue method, we have deided to only report thetiming results for omputing a number of lowest ondution band states. In the ases where thevalene band states are also omputed, we observe similar performane harateristis as reportedhere.Brief desriptions of the test problems used are list in Table 1. All InAs quantum dots listedare embedded in a GaAs lattie matrix. Let H denote the disrete form of the Hamiltonian givenby the empirial pseudopotential method. We ompute the ondution band states by omputingthe smallest eigenvalues of (H � Eref )2 [22℄ with Eref hosen to be �4:4eV whih is in the bandgap and is near the top of the gap. The matrix H is Hermitian. The eigenvetors are representedas plane-waves and all alulations are done at the gamma point. Beause of the gamma pointsymmetry, only half of the plane-wave oeÆients need to be stored. The number of plane-wavesreported in Table 1 are the number of plane-wave oeÆients that are atually stored in omputermemory. 7



Table 2: Time (seonds) used to �nd 5 lowest ondution states of InGaP512.method MATVEC time (se)PLANSO 2578 473.6PLANSO-lok > 20000 > 530max -3 3512 109.7max  2936 84.3max � 2737 78.0Timing results report here are obtained on a massively parallel omputer, the Cray T3E 900,loated at National Energy Researh Superomputer Center1. The matrix-vetor multipliationuses parallel, three dimensional FFTs optimized for the Cray T3E [26℄.Our �rst set of tests is performed on the smallest test problem, InGaP512. It is used toidentify the restarting sheme that works well for this type of problems. Table 2 shows the time(seonds) used by a number of di�erent Lanzos methods on 8 Proessing Elements (PE) of theT3E. In addition to the thik-restart Lanzos method, we also used a pakage alled PLANSO[28℄ in two di�erent ways. The PLANSO pakage implements the Lanzos method with partial re-orthogonalization [12, 16℄. The row headed by PLANSO uses PLANSO without restarting. Beausethis is a very small test problem, we are able to store as many (2578) Lanzos vetors as neessaryto ompute the �ve smallest eigenvalues of (H � Eref )2. For larger matries, the non-restartedLanzos method usually requires more memory than is available on the T3E thus, it is not a widelyavailable option. The other four methods eah store 25 Lanzos vetors. PLANSO-lok representsa ommon way of restarting the Lanzos algorithm. The program has alloated enough spae tostore 25 Lanzos vetors. When this workspae is �lled, the Rayleigh-Ritz projetion is invokedto ompute �ve approximate solutions. If any of them have onverged, it will be loked and onlyused in orthogonalizing new Lanzos vetors. We an either restart the Lanzos method by takingone of the Ritz vetors or taking a linear ombination of the Ritz vetors. However, neither ofthe two were suessful in reahing desired auraies within 20000 matrix-vetor multipliations.The 530 seonds reorded in Table 2 is the time used to run the algorithm for 20000 steps (20000matrix-vetor multipliations).The last three rows of Table 2 are from using the thik-restart Lanzos method with di�erentrestarting strategies. Row three (max -3) uses the dynami restarting sheme used earlier [18℄whih always saves m�3 vetors when restarting. Row four (max ) shows the time used when thethik-restart Lanzos method uses our new implementation to maximize the e�etive gap ratio .The main di�erene between these two is that less Ritz pairs are saved in the latter one. Beause itomputes less Ritz vetors, the restarting proess is heaper than before. In addition, eah restartloop an arry out more matrix-vetor multipliations and therefore generate more new informationfor the subsequent Rayleigh-Ritz projetion. This leads to better approximate solutions with thenewer sheme. In this partiular example, 3512 Lanzos steps are taken with the former restartingstrategy and 2936 steps, or, 16% less steps, are used with the latter strategy, and 23% less time isneeded using the latter one. The time used by the Lanzos method with the strategy of maximizingresidual norm redution of the whole restarted loop (max �), see last row of Table 2, is the smallestin the table. It uses almost 30% less time than restarting with the (max  � 3) method and it issigni�antly better than the naive restart sheme (PLANSO-lok).1NERSC an be aessed through the web at http://www.ners.gov.8
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Figure 1: Time (seonds) used to ompute di�erent numbers of ondution band states of InGaAs9k.Earlier, we mentioned that the restarted Lanzos methods use more iterations than the non-restarted versions that perform re-orthogonalization. Sine eah Lanzos iteration needs one matrix-vetor multipliation, the data shown in Table 2 on�rms the observation. However, the Lanzosmethod using the new restarting strategies needs less iterations than using the older strategies.In fat, the thik-restart Lanzos method that maximizes � only uses six per ent more iterationsthan PLANSO. However, it only uses one sixth of the time of PLANSO. This di�erene in timeis mostly due to the di�erene in time spend in re-orthogonalization. PLANSO saves all Lanzosvetors it ever omputed, when it performs a re-orthogonalization it orthogonalizes against all ofthem. Eah re-orthogonalization is very expensive near the end of the iterations. The restartedLanzos method only saves a small number of vetors so that eah re-orthogonalization is muhheaper. Even though it uses more matrix-vetor multipliations and more re-orthogonalizations itstill uses signi�antly less time.The timing results shown in Table 2 are fairly representative of other tests we have ondutedon this type of eigenvalue problems. In many ases, the new restarting sheme of maximizing � ismore e�etive than others. For this reason, we will only show results using this restarting strategywith the thik-restart Lanzos method, in the rest of this paper. Next, we will show how the newmethod sales with the number of eigenvalues and the matrix sizes.Figure 1 shows the time used to ompute di�erent numbers of ondution band states of theInGaAs9k test problem on 32 proessors of the Cray T3E. The eigenvalues and eigenvetors of(H � Eref )2 are omputed using the thik-restart Lanzos method that tries to maximize � whenrestarting. When omputing neig eigenvalues, the Lanzos basis size is m = neig + 50. In otherwords, the timing results shown in Figure 1 are generated by allowing the Lanzos method to usethe �xed amount of workspae in addition to the spae required to store the eigenvetors. The line9
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Figure 2: Aggregate time (seonds) used to ompute ondution band states of di�erent size testproblems.Table 3: Elapsed time (seonds) used to ompute �ve ondution band states of the test problems.name m # of PE MATVEC timeInGaP512 25 8 2737 78.0InGaAs9k 50 32 5458 1096.2InGaAs93k 100 64 4021 8021.8InGaAs250k 200 256 3107 3782.4going through the data points represents a linear regression of the log of time versus the log of neigand the slope indiates that to ompute twie as many eigenvalues and eigenvetors the restartedLanzos method used about 60 per ent more time (t / n0:7eig). The exat di�erene in time isa funtion of the spetrum distribution as well as the method used to ompute the eigenvalues.Given a di�erent type of eigenvalue problem, the exat saling fator may hange. Here we o�eran intuitive explanation for the sub-linear saling observed here and a more preise analysis an befound elsewhere [10℄. While omputing �1 and x1, the thik-restart sheme also saves the nearbyRitz pairs . When �1 and x1 reah onvergene, �2 and x2 are nearly onverged too. After the �rsteigenvalue is omputed, muh less time may be needed in order to ompute the seond one.The seond type of saling studied here is to see how the new method behaves when the problemsize inreases. Figure 2 shows the aggregate time used by the thik-restart Lanzos method to solvethe di�erent sized empirial pseudopotential alulations. All four problems listed in Table 1 areused. The time shown in the �gure is the aggregate time used by all proessors to ompute the �velowest ondution band states. Table 3 shows the number of proessors and the elapsed time. As10



the problem size inreases, we use more proessors and larger Lanzos bases. The line in Figure 2is a linear regression of the data, more preisely, the log of time versus the log of problem size, andits slope indiates a saling fator of roughly of 1:2, i.e., the aggregate time used is proportional ton1:2, where n is the number of plane-wave bases used. The time used by the Lanzos method growsfaster than linear beause most of its omponents sale super-linearly. For example, the time toapply the Hamiltonian on a vetor sales as n log(n), the Gram-Shmidt proedure used to performre-orthogonalization sales as mn, and the time needed to ompute k Ritz vetors during restartingproedure sales as kmn. In addition, as more proessors are used there is more ommuniationoverhead whih is also ontributing to the total time growing faster than linear. Of ourse, asthe problem size hanges, the spetrum also hanges whih a�ets the total time beause di�erentnumbers of Lanzos steps are needed. Typially, as problem size inreases, more steps are neededto ompute the same number of eigenvalues, and therefore more time will be used.We have also performed a series of tests by diretly omputing the smallest eigenvalues of H.The saling fators observed for these alulations were lose to those observed for omputing theondution band edge states. On this set of test problems, the thik-restart Lanzos method saleswell with both the number of eigenvalues and the matrix size. Many eigenvalue problems fromeletroni struture alulations have similar harateristis to the test problems and we expet thethik-restart Lanzos method to work well for these ases.5 Quality of solutions and workspae requirementIn the previous setion we have demonstrated that the new method uses less time than some of theolder versions of the Lanzos method and the new one sales well as the problem size inreases. Thissetion addresses two issues that worry the appliation programmers partiularly those who performeletroni struture alulations: the Lanzos method is not able to ompute all eigenvetors of adegenerate eigenvalue and it requires more workspae than other methods suh as CG.Eletroni struture alulations often give rise to degenerate or near degenerate eigenvaluesand it is ruial that all eigenvetors are found. In exat arithmeti, the Lanzos method an onlyompute one eigenpair from eah degenerate set. In order to reliably ompute multiple eigenvetorsof a degenerate eigenvalue, one either uses a blok version of the Lanzos method or adds loking tothe standard Lanzos method. To see how the thik-restart Lanzos method omputes degenerateeigenvalues, we start by examining its onvergene history.Figure 3 shows the onvergene history of solving the InGaP512 test problem whih has higherdegeneray than the others. The top plot shows the �ve smallest Ritz values of (H � Eref )2 (innatural units: Rydberg2) and the bottom plot shows their orresponding residual norms. Initially,the �ve smallest Ritz values are distint. After about 700 Lanzos steps, the two smallest Ritzvalues have onverged to the two smallest eigenvalues but the residual norms are only of the orderof 10�5. After about 1400 steps, the third Ritz value drops below the seond one and approahes thesmallest one. This indiates that the seond eigenvetor orresponding to the smallest eigenvalueof (H �Eref )2 has been identi�ed. After about 2200 steps, the third smallest Ritz value onvergesto the �rst two and the third eigenvetor of the smallest eigenvalue appears. It takes roughly thesame number of Lanzos steps to identify one eigenvetor orresponding to the smallest eigenvalueof (H�Eref)2. In this ase, about 700 Lanzos steps are needed to identify eah eigenvetor. Similarobservation have also been made in the ase where the Lanzos algorithm is used with the partialre-orthogonalization but without restart, see Figure 4. Previously, similar onvergene history hasbeen observed in Lanzos methods without re-orthogonalization [6, 21℄. However, the di�erene isthat without re-orthogonalization the Lanzos method repeatedly generates the same eigenvetor11
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Figure 3: The onvergene history of the thik-restart Lanzos method.while with re-orthogonalization the eigenvetors omputed are distint. Our explanation of thesimilarities is as follows. Beause of the oating-point round-o� error, the Lanzos basis is likely toontain a small omponent in the diretion of any eigenvetor. It takes the Lanzos method aboutthe same number of steps to ompute eah eigenvetor beause the onvergene rates are ditatedby the eigenvalues whih are the same for di�erent eigenvetors of a degenerate eigenvalue. Inaddition, the initial starting points an be regarded as the same for most eigenvetors sine everyone, exept the �rst, starts as a round-o� error. Note that loking is not used in generating eitherFigure 3 or 4.The above arguments show that the thik-restart Lanzos method is almost ertain to �nd alleigenvetors of a degenerate eigenvalue. To ensure that no eigenvetor is missed in the solution, wesuggest two strategies, to ompute more eigenvalues than needed and to ask for more auray thanTable 4: The smallest �ve Ritz values of (H � Eref )2 omputed when asking for di�erent neig(krik < 10�5, m = 25). neig MATVEC time �1 �2 �3 �4 �5(se) (�10�4)5 2144 60.8 4.1 4.1 5.1 5.1 5.78 2123 63.4 4.1 4.1 5.1 5.1 5.79 3575 107.4 4.1 4.1 4.1 5.1 5.112
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Figure 4: The onvergene history of the Lanzos method without restart.needed. From Figure 3 and 4, we an identify �ve distint horizontal lines in the Ritz value historyand eah of the lines represents an eigenvalue of (H �Eref )2. If they were simple eigenvalues, the�ve smallest eigenvalues would be 4:1 � 10�4, 5:1 � 10�4, 5:7 � 10�4, 6:1 � 10�4, and 9:7 � 10�4.Table 4 shows the �ve smallest Ritz values omputed when di�erent number of eigenvalues arerequested. As more and more eigenvalues are requested, the �ve smallest Ritz values beome loserand loser to the �ve smallest eigenvalues. When requesting nine eigenvalues, the �ve smallestones displays the orret degeneray. Table 5 shows how the �ve smallest Ritz values hange asthe tolerane hanges. In this partiular ase, we need to set � to something less than 10�5 inorder to get the orret solutions. The time to generate the solutions with the orret degenerayare within 20% of eah other in Table 4 and 5. This indiates that the two shemes are almostequally e�etive. Both shemes need additional researh to make them more rigorous. We o�er thefollowing rule-of-thumb for hoosing parameters:� when hoosing the option of omputing more eigenvalues than needed, ompute at least �vemore eigenvalues or if omputing a large number of eigenvalues ompute 10% more;� when using the residual tolerane as the ontrol, make sure the value of � is less than p�kAk,where � is the mahine preision and kAk is the two-norm or Frobenius norm of the matrix.Between the two shemes, we believe the seond one, ontrolling � , is more e�etive. This isbased on the observation that when all eigenvetors of a degenerate eigenvalue are identi�ed theresidual norms derease rapidly and monotonially. This means that requiring addition auraydoes not ost a signi�ant amount of extra time. In Table 5, � = 10�7 and � = 10�8 both lead tothe orret solutions, but requiring � = 10�8 only takes 5% more time than requiring � = 10�7,13



Table 5: The smallest �ve Ritz values of (H �Eref )2 omputed when di�erent residual toleranesare used (krik < � , m = 25).� MATVEC time �1 �2 �3 �4 �5(se) (�10�4)10�3 712 20.3 4.1 5.1 6.1 9.7 15.010�4 1979 56.5 4.1 4.1 5.1 5.1 5.710�5 2144 60.8 4.1 4.1 5.1 5.1 5.710�6 2737 78.0 4.1 4.1 4.1 5.1 5.110�7 2956 84.4 4.1 4.1 4.1 5.1 5.110�8 3109 88.5 4.1 4.1 4.1 5.1 5.1Table 6: Time (seonds) used to ompute the �ve lowest ondution band states of InGaAs9k usingdi�erent size bases. m 50 60 75 100 200time 1096.2 1040.5 1063.1 1107.2 1299.2similarly requiring � = 10�7 only needs 8% more time than requiring � = 10�6. There are manyases where two eigenvalues are distint but are near to eah other, e.g., eigenvalue 5:7 � 10�4and 6:1 � 10�4, where the Lanzos method may have similar diÆulty to omputing degenerateeigenvalues. The two shemes suggested here should be reasonable approahes to deal with thisase as well.One parameter the user needs to hoose when using a restarted Lanzos method is the basissize, m. Next we will show that it is reasonably easy to pik a good value for m. Table 6 showsthe time required with di�erent m to ompute the �ve lowest ondution band states. From thetable we see that the di�erene in time aused by di�erent m is relatively small ompared tothe di�erene between using the thik-restart Lanzos method and other versions of the Lanzosmethod, see Table 2. Typially, when m is small, as m inreases, the time dereases. After minreases to the optimal value, the minimum time is ahieved. If m inreases further, the timeinreases slowly as shown in Table 6. The user usually has to perform a small number of testsin order to identify a reasonable m to use. For omputing neig eigenvalues and eigenvetors, wesuggest testing m = neig + 10 and m = neig + 20. If one of the two test ases fail to omputethe solutions in a reasonable amount of time or the larger basis size works onsiderably betterthan the smaller one, a even larger m should be used. The basis sizes reported in table 3 an beused as a referene for solving similar types of problems. However, the values reported here areprobably larger than neessary if one is to ompute the smallest eigenvalues of H rather than thoseof (H �Eref )2.One of the ommon omplaints against the Lanzos method is that it uses more workspae thanCG. This is true in some ases. However, beause a larger workspae, i.e., a largerm, often leads to afaster onvergene rate, it is worthwhile to use more workspae if there is enough memory available.In addition, the thik-restart Lanzos method works well with a onstant amount of workspae asthe number of eigenvalues inreases as shown Figure 1. If a large number of eigenvalues andeigenvetors are required, the thik-restart Lanzos method may still need more workspae than14



some band-by-band versions of the CG method, however, it may atually need less workspae thansome implementations of all-band CG methods.6 Conluding remarksIn this paper, we have given a pratial version of the thik-restart Lanzos method for symmet-ri and Hermitian eigenvalue problems and desribed two restarting strategies that we found tobe e�etive. Through numerial examples, we have demonstrated that the thik-restart Lanzosmethod uses less time than older versions of the Lanzos method and the new method sales well asthe problem size inreases. This method is well suited for omputing a large number of eigenvaluesand eigenvetors of very large matries.Many eletroni struture alulations need to ompute solutions of a set of related eigenvalueproblems [13℄. In these ases, it is important to take advantage of the existing solutions whensolving the next eigenvalue problem. One way to do this is to use a linear ombination of theeigenvetors from the previous step as the starting vetor for the Lanzos method [1, 15℄. However,a version of dynami thik-restart Davidson method [18℄ might be more appropriate than the thik-restart Lanzos method. Even in this ase, the restarting strategies desribed in this paper are stilluseful for the Davidson method.Through the study of the onvergene history, we onlude that the thik-restart Lanzosmethod an ompute all eigenvetors of degenerate eigenvalues. There is no easy way to detet thatall eigenvetors are found, however, the two strategies, omputing more eigenvalues and requiringmore auray, appear to work well in pratie.The Lanzos method often needs more workspae than some versions of the CG method. How-ever, if there is a large amount of omputer memory available, it is worthwhile to let the thik-restartLanzos method use more workspae as this often leads to less time being used. Clearly, the thik-restart Lanzos method is not for every type of eigenvalue problem. However, in the ases where itis appropriate, for example, when tens of eigenvalues are required, when there is reasonable amountof spae to store some extra vetors (m � neig > 10), or when there isn't a large number of goodstarting vetors, we have demonstrated that the thik-restart Lanzos is an e�etive method.7 AknowledgmentThis work was supported by the Diretor, OÆe of Siene, OÆe of Laboratory Poliy and Infras-truture Management, of the U.S. Department of Energy under Contrat No. DE-AC03-76SF00098,and OÆe of Basi Energy Siene, Division of Material Siene, under ontrat No. DE-AC36-83CH10093.This researh used resoures of the National Energy Researh Sienti� Computing Center,whih is supported by the OÆe of Energy Researh of the U.S. Department of Energy.We would also like to thank Osni Marques and Alex Zunger for useful disussion during thepreparation of this paper.Referenes[1℄ A. Alavi, J. Kohano�, M. Parrinello, and D. Frenkel. Ab Initio moleular dynamis withexited eletrons. Phys. Rev. Lett., 73(19):2599{2602, 1994.15
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